
0.1 Методика исследования

Первым этапом была сборка вычислительного пакета GROMACS.[1] Для кор-
ректной сборки необходимо ознакомиться с минимальным перечнем библиотек и под-
держиваемых инструкций вычислительного пакета. Данную информацию можно найти
в документации GROMACS. В данной работе вычислительный пакет включал следую-
щие библиотеки (Таб.0.1). По результатам исследованияHPC-систем помимо основных
задач проекта, можно будет оценить эффективность данной сборки.

Таблица 0.1: Библиотеки для сборки вычислительного пакета GROMACS

Одной из важных особенностей GROMACS является поддержка параллельного
вычисления задач в стандартах OpenMP и MPI.

MPI - программный интерфейс (API) для обмена информацией между парал-
лельно работающими процессами. MPI используется на системах распределенной па-
мятью,где каждый параллельный процесс работает в своем собственном пространстве
памяти в отрыве от других.

OpenMP - это стандарт программирования параллельных вычислений на систе-
мах с общей памятью, позволяющий автоматически поделить задачу на несколько
исполнительных потоков, которые будут работать параллельно, и управлять его выпол-
нением.

Вместе, MPI и OpenMP обеспечивают возможности для параллельного выпол-
нения задач различной сложности на многопроцессорных и многоядерных системах.

1

Применение MPI и OpenMP позволяет значительно ускорить вычисления и сделать
обработку данных более эффективной.[2]

Вторым этапом является компиляция бенчмарка. Для компиляции бенчмарка в
рамках вычислительного пакета GROMACS необходимо три файла. Файл топологии
системы (.top) - содержит информацию о типах атомов, связях, силовых полях и описа-
ние модели, файл параметров моделирования (.mdp), который содержит информацию
о выборе методов и алгоритмов, параметрах симуляции и выводе результатов, а также
файл (.gro), который задает стартовую конфигурацию системы и содержит информа-
цию о координатах атомов ApoA1 в растворе. После подготовки данных файлов, файл
расчет (.tpr) компилировался следующей командой:
gmx_mpi grompр -f run.mdp -c apoa1ġro -p apoa1ṫop -o run.tpr -maxwarn 1
Где ключи -f, -c, -p, -o указывают на файлы, описанные выше. Ключ -maxwarn 1
задает числомаксимальнодопустимыхпредупреждений, при генерации .tpr-файла.Если
количество предупреждений превышает заданное число, то генерация файла будет
прервана,данный ключ обеспечит корректную компиляцию исполнительного файла.
(Файлы для компиляции были взяты с https://gitlab.com/nidkond/apoa1-bench)

Третьим этапом является корректный подбор параметров запуска, для этого ис-
пользовался запуск в пакетном режиме. Использование пакетного режима выполнения
задач является одним из основных преимуществ кластерных систем, поскольку позво-
ляет оптимизировать потребление ресурсов суперкомпьютера и сделать процесс рабо-
ты более эффективным. Скрипт-файл содержит команды для загрузки необходимых
модулей, настройки переменных среды, запуска программы с определенными парамет-
рами и т.д. Он также содержать запросы на выделение ресурсов, таких как количество
вычислительных ядер, объем оперативной памяти, время выполнения и т.д. Полезным
дополнением к скрипту является возможность сохранения вывода и ошибок в фай-
лы на диск, что позволяет более эффективно отслеживать и отлаживать выполняемые
задачи. Общий синтаксис скрипта имеет следующий вид (Рис.0.1)

Здесь #!/bin/bash сообщает операционной системе, что данный скрипт явля-
ется скриптом для командной оболочки Bash. Строки, начинающиеся с #SBATCH, со-
держат директивы для пакета SLURM, который управляет задачами на кластере. Они
задают параметры, такие как время выполнения, требуемые ресурсы (cores, memory,
и др.), название задачи, лог файлы, и др. Далее идет блок, начинающийся со строки
module load, в котором производится загрузка необходимых модулей. Затем мож-
но перечислить блок настройки переменных или констант для выполнения задачи на

2

https://gitlab.com/nidkond/apoa1-bench

Рис. 0.1: Общий синтаксис скрипт файла

кластере при помощи команды export. Наконец, блок <пользовательские команды>
содержит команды, которые должны быть выполнены в рамках задачи на кластере. В
рамках данного направления шаблон скрипт файла имел следующий вид (Рис.0.2):

Рис. 0.2:Шаблон скрипт файла, используемого при запусках

C помощью данной конфигурации можно получить необходимые ресурсы и обес-
печить оптимальныеусловия запуска на суперкомпьютере бенчмаркаApoA1,реализованного
в рамках вычислительного пакета GROMACS.

Следующим шагом является определение компонент HPC-систем и определение
набора инструментов для сбора данных.Для определения компонент суперкопьютера и
их конфигурации на базе LINUX, можно использовать следующие команды: scontrol

3

show node — команда Linux, которая отображает информацию о всех узлах вычис-
лительного кластера, подключенных к системе управления кластером Slurm.Более де-
тальную информацию о центральных процессоров можно получить с помощью коман-
ды: cat /proc/cpuinfo.Из результатов данных команд были сделаны выводы о конфи-
гурации каждого узла, которые использовались для определения параметров запуска.
Для сбора данных об использовании ресурсов системы и анализа производительности
использовались следующие методы:

1.Встроенные вGROMACS профилировщики. Из них можно получить детальную
информацию о выделенных компонентах суперкомпьютера для запуска бенчмарка, ко-
личество операций с плавающей точкой (FLOP) для всех видов взаимодействий,общее
количество FLOP бенчмарка. Информацию о использовании вычислительных ресурсов
для различных частей программного обеспечения.

2.Инструмент профилирования для Linux-Perf.[3] С помощью данного инстру-
мента можно получить более детальную информацию о результатах запуска бенчмарка,
такие как количестве циклов процессора в ходе выполнения задачи, количестве ин-
струкций, средней частоте процессора, кэш-промахах и других параметров. Она может
быть использована для поиска "узких"мест и оптимизации производительности.

3.Для динамического анализа и контроля запуска использовалась интерактивная
утилита Linux htop и утилита командной строки scontrol show <JOBID>

4.HPC TaskMaster - встроенная система мониторинга эффективности задач су-
перкомпьютера "cHARISMa". С помощью неё можно определить загруженность CPU,
загруженность GPU, объем используемой памяти, энергопотребление GPU.

5.Бенчмарк STREAM - это референсный тест, который используется для оценки
пиковой пропускной способности памяти.[4]

Финальным шагом в исследовании высокопроизводительных систем является
получение результатов запуска на компонентах вычислительных систем.Для оценки
производительности необходимо провести серии запусков эталонной задачи на CPU
совместно с GPU с использованием средств параллелизма MPI и OpenMP.

В первых сериях запуска необходимо подобрать оптимальное количество MPI
процессов и OpenMP потоков при выполнении задачи. Далее определить количество
ядер CPU и количество GPU, при котором достигается наибольшая эффективность.
После получения подобранных параметров вычислить производительность и эффек-
тивность компонент суперкомпьютеров.

Далее рассмотреть полученные данные нормируя на стоимость используемых

4

компонент, энергопотребление и пиковую производительность. Провести анализ полу-
ченныхданных.Определить возможныепричиныприводящиек снижениюэффективно-
сти использования вычислительных мощностей. Составить рейтинг эффективности ар-
хитектур суперкомпьютеров и их компонент по эффективности,производительности,
энергопотреблению и стоимости в решении задач.

Список использованных источников

[1] Mark James Abraham и др. “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers”. В: SoftwareX 1
(2015), с. 19—25.

[2] Patrick Carribault, Marc Pérache и Hervé Jourdren. “Enabling Low-Overhead Hybrid
MPI/OpenMP Parallelism with MPC.” В: IWOMP 6132 (2010), с. 1—14.

[3] Amir Reza Ghods. “A study of Linux Perf and slab allocation sub-systems”. Дис. . . .
маг. University of Waterloo, 2016.

[4] Maycon Viana Bordin и др. “DSPBench: A suite of benchmark applications for
distributed data stream processing systems”. В: IEEE Access 8 (2020), с. 222900—
222917.

5

	Методика исследования

